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Abstract

A serially concatenated code with interleaver consists of the cascade of an ouler encoder, an interleaver
permuting the outer code words bits, and an inner encoder whose input words are the permuted outer code words.
The construction can be generalized to h cascaded encoders separated by h — 1 interleavers. We obtain upper
bounds to the average maximume-likelihood bit ervor probability of serially concatenated block and convolutional
coding schemes. Then, we derive design guidelines for the outer and inner encoders that maximize the interleaver
gain and the asymptotic slope of the error probability curves. Finally, we propose a new, low-complexity iterative
decoding algorithm. Throughout the paper, extensive comparisons with parallel concatenated convolutional codes

known as "turbo codes” are performed, showing that the new scheme can offer superior performance.
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I. ACRONYMS

CC: Constituent Code.

PCCC: Parallel Concatenated Convolutional Code.
PCBC: Parallel Concatenated Block Code.

SCC: Serially Concatenated Code.

SCBC: Serially Concatenated Block Code.

SCCC: Serially Concatenated Convolutional Code.
ML: Maximum Likelihood.

TOWEF: Input Qutput Weight Enumerating Function.
CWEF: Conditional Weight Enumerating Function.
SISO: Soft Input Soft Output module.

SW-SISO: Sliding Window - Soft Input Soft Output module.
LLR: Log-Likelihood Ratio.

MAP: Maximum A Posteriori.

11. INTRODUCTION

In his goal to find a class of codes whose probability of error decreased exponentially at rates less than
capacity, while decoding complexity increased only algebraically, David Forney [1] arrived at a solution
consisting of the multilevel coding structure known as concatenaled code. It consists of the cascade
of an inner code and an outer code, which, in Forney’s approach, would be a relatively short inner
code (typically, a convolutional code) admitting simple maximum-likelihood decoding, and a long high-
rate algebraic nonbinary Reed-Solomon outer code equipped with a powerful algebraic error-correction
algorithm, possibly using reliability information from the inner decoder.

Initially motivated only by theoretical research interests, concatenated codes have since then evolved as a
standard for those applications where very high coding gains are necded, such as (deep-)space applications
and many others. Alternative solutions for concatenation have also been studied, such as using a trellis-
coded modulation scheme as inner code [2], or concatenating two convolutional codes [3]. In the latter
case, the inner Viterbi decoder employs a soft-output decoding algorithm to provide soft-input decisions
to the outer Viterbi decoder. An interleaver was also proposed between the two encoders to separate

bursts of errors produced by the inner decoder.
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We find then, in a “classical” concatenated coding scheme, the main ingredients that formed the basis
for the invention of “turbo codes” [4], namely two, or more, constituent codes (CCs) and an inlerleaver.
The novelty of turbo codes, however, consists of the way they use the interleaver, which is embedded
into the code structure to form an overall concatenated code with very large block length, and in the
proposal of a parallel concatenation to achieve a higher rate for given rates of CCs. The latter advantage
is obtained using systematic CCs and not transmitting the information bits entering the second encoder.
In the following, we will refer to turbo codes as parallel concatenated convolutional codes (PCCCs). The
so-obtained codes have been shown to yield very high coding gains at bit error probabilities in the range
10-% — 10~7; in particular, low bit error probabilities can be obtained at rates well beyond the channel
cutofl rate, which had been regarded for long time as the “practical” capacity. Quite remarkably, this
performance can be achieved by a relatively simple iterative decoding technique whose computational
complexity is comparable to that needed to decode the two CCs.

In this paper, we consider the serial concatenation of interleaved codes or serially concatenated codes
(SCCs), called SCBC or SCCC according to the nature of CCs, that can be block (SCBC) or convo-
lutional codes (SCCC). For this class of codes, we obtain analytical upper bounds to the performance
of a maximum-likelihood (ML) decoder, propose design guidelines leading to the optimal choice of CCs
that maximize the inferleaver gain and the asymptotic code pérformance, and present a new iterative
decoding algorithm yielding results close to capacity limits with limited decoding complexity. Preliminary
results have appeared in [5] and [6]. Extensive comparisons with turbo codes of the same complexity and
decoding delay are performed. ) )

With this embodiment of results, we believe that SCCC can be considered as a valid, in some cases
superior, alternative to turbo codes. . )

In Section III, we derive analytical upper bounds to the bit error probability of both SCBCs and
SCCCs, using the concept of “uniform interleaver” that decouples the output of the outer encoder from
the input of the inner encoder. In Section IV, we propose design rules for SCCCs tﬁrough an asymptotic
approximation of the bit error probability bound assuming long interleavers or large signal-to-noise ratios.
In Section V we compare serial and parallel concatenations of block and convolutional codes in terms of
maximum-likelihood analytical upper bounds. Section V1 is devoted to the presentation of a new iterative
decoding algorithm and to its application to some significant codes. Performance comf)a-risé)n between

SCECs and PCCCs under suboptimum iterative deéoding algorithms are also presented in Section VI.

111. ANALYTICAL BOUNDS TO THE PERFORMANCE OF SERIALLY CONCATENATED CODES
A. A union bound to the bil error probability and some general warnings

Consider an (n, k) linear block code, and its Input-Ouiputl Weight Enumerating Function (IOWEF),

defined as
k

k n
AW HYE ST ST AusWvHY = 3" W A(w, H) (1

w=0 h=0 w=0
where A, » represents the number of code words with weight i generated by information words of weight

w. In (1) we have also implicitly defined the conditional weight enumerating function (CWEF)

n
Aw, H) 2" Ayl (2)

h=0
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as the function that enumerates the weight distribution of code words generated by information words of
a given weight w.

A linear block (or convolutional) code possesses the uniform error property [7], stating that its word
and bit error probability performance can be evaluated under the assumption that the all-zero code word
has been transmitted. Assume then that the all zero code word xo has been transmitted, and define
the pairwise error event egn(w) as the event in which the likelihood of a code word with weight h and
generated by an information word of weight w is higher than that of the all-zero code word .

Using the union bound, the bit error probability under maximum likelihood soft decoding for binary
PSK (or binary PAM) transmission over an additive white Gaussian noise channel with two-sided noise

power spectral density Ng/2 can be upper bounded as

n

k
Pi(e) < D) Pilel o, eon(w)]Pleon(w)]

h=1w=1

n k
IV Yauperte (, / "Rch) =3 §_j BY erfe (, /ﬁ%’?ﬁ> 3)
h=1w h=1

=1

where R, is the code rate, Ej is the energy per information bit!, and where we have defined the bit error
multiplicily \

B £ wz;} = A )
Expressions (3) and (4) suggest that two ways can be followed to improve the bit error probability
performance: the first, leading to the more traditional concept of good (and asymptotically good) codes,
tries to increase the first, more significant weights h in (3), the second, forming the basis of turbo codes
and also of serially concatenated codes, aims at reducing the bit error multiplicities (4). To quote Dave
Forney’s 1995 Shannon lecture: Rather than attackzng error exponents, turbo codes allack multiplicities,
turning conventional wisdom on ils head.

A more compact, but looser, upper bound, can be obtained from (3) using the inequality

—;—erfc(:c) <e (5)
which yields
k
w
Pb(e) < Z 'E[A(wv H)]l}l:e'Rch/No (6)
w=1

From (3) and (6), we conclude that, in order to upper bound the bit error probability for any linear block
code, we need to evaluate its CWEF. As é consequence, also for concatenated codes with interleavers we
can use (3) and (6), provided that we are able to compute the CWEF of the overall code assuming that
the CWEFs of the constituent codes (CCs) are known. This has been done already for “turbo codes”, i.e.
parallel concatenated codes, in [8]. In the following, we will show how to extend those results to the case
of serial concatenation.

Before starting the analysis leading to the evaluation of the CWEF of a serially concatenated code
(SCC) with interleaver, a warning to the readers is necessary. Both (3) and (6) stem from the union

11t must be noted that Ey/Np is not the signal-to-noise ratio that can be measured in the channel, which, indeed, is lower
by the factor R..
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hound, stating that the probability of a union of events is less than or equal to the sum of the probabilities
of the individual events. The union bound is used extensively as an upper limit to the error probabilities
for digital transmission systems. The sums of the individual probabilities in the right hand sides of (3) and
(6), however, are not probabilities themselves, and can thus assume large values much greater than one.
In fact, it is common knowledge in the field that union bounds are very close to the true probability in the
case of maximum likelihood decoding for medium-high signal-to-noise ratios, whereas they tend to diverge
for low signal-to-noise ratios. A widely accepted rule of thumb is that the signal-to-noise ratio where they
start to become unreliable is the one yielding the cut-off rate of the channel. The behavior of the bounds
is illustrated as a typical example in Figure 1, where we plot the bounds for two different rate 1/3 parallel
concatenated codes and compare them with simulation results obtained using the suboptimum, iterative
decoding algorithm proposed to decode turbo codes. Also drawn in the figure is the E}/Np corresponding

to the channel cutoff rate.

Some general comments, partly based on Figure 1, are appropriate:

+ As previously anticipated, the upper bounds based on the union bound diverge at a signal-to-noise
ratio close to the channel cutoff rate. Obtaining tighter upper bounds capable of extending the
validity interval of the union bounds for eoncatenated codes is an impertant, and still widely open,
topic for research. The new bounds could be based on the technique successfully employed in [9] for
convolutional codes, or on the classical Gallager bound [10]. A successful application of the Gallager
bound to parallel concatenated codes with interleavers has been described in [11], where it is shown
that the new bound extends the validity of the union bound for some range of signal-to-noise ratios
below the channel cutoff rate, typically 0.5 dB. On the other hand, those attempts would still be based
on the hypothesis of maxi—mum likelihood decoding. Thinking of applying them to the suboptimum
iterative decoding seems not realistic.

+ To obtain the divergence of the union bound one needs to compute a very large number of terms for
the summation in the right-hand side of (3), or (6), and this was indeed the case for the example to
which the curves of Figure 1 refer. In that case, however, the interleaver length N was limited to
100. When N becomes very large, as it is required to approach the channel capacity, only a limited
number of terms in the summations (3) and (6) can be obtained with a reasonable computational
complexity. As a consequence, the obtained upper bounds are still very accurate above the channel
cutoff rate, but may not present the divergence at cutoff rate. In those cases, the reader should only
consider as-reliable the bit error probability values above the cutoff rate, or perhaps half a dB below
it, according to the results of [11]. A way to overcome this drawback, and indeed to always show
the divergence of the union bound, has been proposed in [12]. It has, however, to rely on the looser
bound (6).

« The main tool used in this paper to analytically predict the performance and to find design rules
about the main CCs parameters is a union bound. We have seen, on the other hand, that the union
bound is tight only for medium-high signal-to-noise ratios. One could then question the validity of
the approach, which suffers of the paradox of using a bound not applicable to very low signal-to-noise
ratios in order to design coding schemes intended to work near channel capacity.

We are conscious of this inconsistency, yet, for one hand, have simply nothing better to propose, and,

on the other hand, we had widely verified by simulation that the parallel concatenated codes designed
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- N=100, rate=1/3

SIMULATION
10 _ ............

E,/N, (dB)

Fig. 1. Comparison of bit error probability curves obtained through union bounds and simulations for two parallel concate-
nated convolutional codes over an additive Gaussian noise channel. Also indicated is the Eu/No value corresponding to

the channel cutoff rate
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Outer code Inner code :
! Interleaver
N Pk KYlength N=mp§l (n.p)

Fig. 2. Serially concatenated (n,k, N = mp) block code

on the basis of our rules are indeed very good also at very low signal-to-noise ratios (see [13], [14]).
In the following of this paper, we will show that this heuristic validation of the design rules also holds
for serially concatenated codes with interleavers. )

¢ The last observation concerns still another inconsistency, lying in the fact that we are using bounds
based on maximum likelihood decoding to design codes that are decoded according to a different,
suboptimum algorithm. Also in this case we invoke the heuristic validation stemming from a large
number of simulations, which show the convergence of the simulated performance toward the ana-
lytical bounds. In Figure 1, where the simulated points have been obtained with the suboptimum,
iterative decoding algorithm, we see a nice example of this behavior.

B. Ewvaluating the bit error probability upper bound for serially concatenated block codes

We will now show how to apply the union bounds (3) and (6) to the case of scrially concatenated codes
with interleavers. For simplicity of the presentation, we begin considering serially concatenated block
codes (SCBCs).

The scheme of two serially concatenated block codes is shown in Figure 2. It is composed of two cascaded
CCs, the outer (p, k) code C, with rate R? = k/p and the inner (n,p) code C; with rate R = p/n, linked
by an interleaver of length N = mp that is an integer multiple of the length p of the outer code words.
The scheme works as follows: the mp bits of a number m of code words of the outer code are written into
the interleaver of length N = mp, and read in a different order according to the permutation performed
by the interleaver. The sequence of N bits at the output of the interleaver is then sent in blocks of length
p to the inner encoder.

The overall SCBC is then an (n, k) code with rate Rf = R2 x Ri = k/n, and we will refer to it as the
{n,k, N = mp) code Cs.

In the following, we will derive an upper bound to the M1, performance of the overall code Cs, assuming
first. that m = 1, and then extending the result to the general case. We assume that the outer and inner
CCs are linear, so that also the SCBC is linear and the uniform error property applie.s, i.e. the bit error
probability can be evaluated assuming that the all-zero code word has been transmitted.

In order to apply the upper bounds (3) and (6) to the SCBC, we need to evaluate the CWELF of the
code Cs. assuming that we know the CWEFs of the CCs. '
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_1/6
P 0011
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1001
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1100
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Uniform

0101 ———»
Interleaver

Fig. 3. The action of a uniform interleaver of length 4 on sequences of weight 2

If p is low, we can compute the coefficients A, of the CWEF A(w, H) (2) by letting each individual
information word with weight w be first encoded by the outer encoder C, and then, after the p bits of the
outer code word have been permuted by the interleaver, be encoded by the inner encoder Cj originating
an inner code word with a certain weight. After repeating this procedure for all the information words
with weight tw, we should count the inner code words with weight h, and their number would be the value
of Ay n. When k is large, or, in the case N = mp, when m is large, the previous operation becomes too
complex, and we must resort to a different approach.

The key point, here, is that we would like to obtain a simple relationship between the CWEFs of the
two CCs, an operation that is prevented by the fact that the information on the information word weight
is not enough to obtain the weight of the inner code word, which, instead, depends on the weight of the
outer code word and on the permutation induced by the interleaver.

As in [8], [15], a crucial step in the analysis consists in replacing the actual interleaver that performs
a permutation of the N input bits with an abstract interleaver called uniform interleaver, defined as a

probabilistic device that maps a given input word of weight [ into all distinct (1;,) permutations of it

with equal probability P =1/ (IY) (see Figure 3).

Use of the uniform interleaver permits the computation of the “average” performance of the SCBC,
intended as the expectation of the performance of SCBCs using the same CCs, taken over the set of
all interleavers of a given length. A theorem proved in [8] guarantees the meaningfulness of the average
performance, in the sense that there will always be, for each value of the signal-to-noise ratio, at least one
particular interleaver yielding performance better than or equal to that of the uniform interleaver.

Let us define the IOWEF and the CWEF of the SCBC Cs as ASS(W, H) and A®s(w, H). Their
definition and meaning are the same as in (1) and (2).

As seen, to apply the bounds (3) and (6) to the bit error probability we need to evaluate the CWEF
of the SCBC from the knowledge of the CWEFs of the outer and inner codes, which we call ACe(w, L)
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and AS ({, Il ), where the first enumerates the weight distributions of the outer code words generated by
information words of weight w, and the second enumerates the weight distributions of the inner code
words generated by outer code words of weight 1.

To do this, we exploit the properties of the uniform interleaver, which transforms a code word of weight
[ at the output of the outer encoder into all its distinct (}Y) permutations. As a consequence, each code
word of the outer code C, of weight I, through the action of the uniform interleaver, enters the inner
encoder generating (IY) code words of the inner code C;. Thus, the number Asfh of code words of the

SCBC of weight h associated with an information word of weight w is given by

o~ Aga X A

AL =D A ™
1=0 ( l )
From (7) we derive the expressions of the CWEF and IOWEF of the SCBC as
N C Ci
Az x AYi(LLH
ACS (w, H) =y~ L.H) , (8)
1=0 ( l )
N .
AC (W, 1) x ACi(l,H :
ACS(VV, H)= Z ( )N ( ) , (9)
=0 ( ! )

where AC>(W,1) enumerates the weight distributions of the information words that generate code words

of the outer code with a given weight [.

Example 1
Consider the (7, 3) serially concatenated block code obtained by concatenating the (4,3) parity check
code to a (7,4) Hammiing code through an interleaver of length N = 4. The IOWEF AC(W, L) and

AC(L, H) of the outer and inner code are
AC (W, L) = 14 W(3L?) + W2(3L?) + W3(L%)

AC(L,H)=1+4 L3H3 + HYY + L2(3H3 4+ 3H*) 4+ L3(H®> 4+ 3HY) + L*H",

so that
AC(W,0) = 1 ACHO0,H) = 1
AC(W,1) = 0 A% (1,H) = 3H3+ H*
AC(W,2) = 3W+3W? | A% (2,H) = 3H3+3H*
AC(W,3) = 0 AS(3,H) = H343H*
AC(W,4) = W3 AC (4, H) = H".

Through (9), we then obtain

ACS(W, H)

2“: ACe(W, 1) x AC(l, H)
50

B _1i_1+9_-_(311:+114) N
(3W + 3W?2) - (3H3 + 3H*)

+ 5 +

February 18, 1998 DRAFT



10 IEEE TRANSACTIONS ON INFORMATION THEORY, VOI,. XX, NO Y, MONTH tuon

0-(H3+3H"Y W3.HT
4 ( 4+ 3 )+ ,
= 14+ WQSH3+ L5HY) + W2(1L.5H* + 1.5HY)Y + WHT.

Previous results (9) and (8) can be easily generalized to the more interesting case of an interleaver with
length N being an integer multiple (by a factor m > 1) of the length of the outer code words. Denoting
by ACS (W, L) the IOWEF of the new (mp, mk) outer code, and similarly by AC" (L, H) the IOWEF of

the new (mn, mp) inner code, it is straightforward to obtain

AST (W, L) [AC= (W, L)]™
AST(L,H) = [AS(L,H)™. (10)

From the IOWEFs (10), through (7), we obtain the CWEFs AC" (W, 1) and A€ (I, H) of the new CCs,
and, finally, through (8) and (9), the CWEF and IOWEF of the new (n, k, N = mp) SCBC Cg

N ASy x ACT (1, H)

A% (w, H)y =) N : (11)
1=0 (1)
N m m
AW, H) =3 AT W) x AT (LH) (12)

=0

Example 2

Consider again the CCs of Example 1, linked by an interleaver of length N = 4m, and use equations (11),
(2) and (3). The so obtained upper bound to the bit error probability is plotted in Figure 4 for various
values of the integer m. The curves show the interleaver gain, defined as the factor by which the bit error
probability is decreased with the interleaver length at a given signal-to-noise ratio. Contrary to parallel
concatenated block codes [8], the curves do not exhibit the interleaver gain saturation. Rather, the bit

error probability seems to decrease regularly with m as m~!. We will explain this behavior in Section IV.

<

C. Serially concalenaled convolutional codes

The structure of a serially concatenated convolutional code is shown in Figure 5. It refers to the case
of two convolutional CCs, the outer code C, with rate R? = k/p, and the inner code code C; with rate
R} = p/n, joined by an interleaver of length N bits, generating an SCCC Cs with rate Ry = k/n. N will
be assumed to be an integer multiple? of p. We assume, as before, that the convolutional CCs are linear,
so that the SCCC is linear as well, and the uniform error property applies.

The exact analysis of this scheme can be performed by appropriate modifications of that described in

[8] for PCCCs. It requires the use of a hyper-irellis having as hyper-states pairs of states of outer and inner

2 Actually, this constraint is not necessary. We can choose in fact inner and outer codes of any rates Ri = ki/n; and

R? = ko/no, constraining the interleaver to be an integer multiple of the minimum common multiple of n, and &, i.e.
N = K - mcm(no, ki). This generalization, though, leads to more complicated expressions and is not considered in the
following.
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Fig. 4. Analytical bounds for serially concatenated block code of Example 2 (SCBC1 in Table I}

codes. The hyper-states S;; and Sip, are joined by a hyper-branch that consists of all pairs of paths with
length N/p that join states s;, s; of the inner code and states s;, s, of the outer code, respectively. Each
hyper-branch is thus an equivalent SCBC labeled with an IOWEF that can be evaluated as explained
in the previous subsection. From the hyper-trellis, the upper bound to the bit error probability can be
obtained through the standard transfer function technique employed for convolutional codes [10]. As
proved in (8], when the length of the interleaver is significantly greater than the constraint lengths of the
CCs, an accurate approximation of the exact upper bound consists in retaining only the branch of the

hyper-trellis joining the hyper-states Sgo, Soo. In the following, we will always use this approximation.

Example 3

Consider a rate 1/3 SCCC formed by an outer 4-state convolutional code with rate 1/2 and an inner 4-state
convolutional code with rate 2/3, joined by a uniform interleaver of length N = 200,400, 600, 800, 1000
and 2000 (SCCC! of Table III).
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SCCC R=k/n

Fig. 5. Serially concatenated (n, k, N) convolutional code

Both encoders are systematic and recursive and the generator matrices are reported in Table II, first
and third rows. Using the previously outlined analysis, we have obtained the bit error probability curves
shown in Figure 6. The performance shows a very significant interleaver gain, i.e. lower values of the bit
error probability for higher values of N. The interleaver gain seems to behave as N 3. This behavior will

be explained in the next Section.

IV. DESIGN OF SERIALLY CONCATENATED CODES

In the previous section, we have presented an analytical bounding technique to find the ML performanceb
of SCBCs and SCCCs. For practical applications, SCCCs are to be preferred to SCBCs. One reason is
that a-posteriori-probability algorithms are less complex for convolutional than for block codes, the second
is that the interleaver gain can be greater for convolutional CCs, provided that they are suitably designed.

Hence, we deal mainly with the design of SCCCs, extending our conclusions to SCBCs when appropriate.

Before delving deeply into the analytical derivation, it is important to say a few words about the design
methodology. The performance of a concatenated code with interleaver, for both cases of parallel and
serial concatenation, depends on the constituent codes and on the interleaver in a strictly interdependent
manner. The joint design of CCs and the interleaver, however, is a hopeless goal, and the only way to
achieve significantly good results seems to pass through a decoupled design, in which one first designs the
CCs, and then tailors the interleaver on their characteristics. Qur approach to achieve this goal resides
once more in the use of the uniform interleaver, which yields to an average optimization of the CCs,
followed by a customization of the actual interleaver. Only the first step, i.e. the design of CCs, will be

treated here.

Consider the SCCC depicted in Figure 5. Its performance can be approximated by that of the equivalent
block code whose IOWEF labels the branch of the hyper-trellis joining the zero states of outer and inner

code trellises. Denoting by A€s(w, H) the CWEF of this equivalent block code, we can rewrite the upper

DRAFT February 18, 1888
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Fig. 6. Analytical bounds for the serially concatenated convolutional code of Example 3 (SCCC1 of Table 111}

bound (6) as®

NR? N/R. NRC
Pe)< 3 NR"ACC(w H)lgoe-remamo = 3. 3 NRO ACs,e~hReEbNo (13)
w=ws, h=h,, w=wj,

where w?, is the minimum weight of an input sequence generating an error event of the outer code, and
h,, 1s the minirﬁum weight4 of the code words of Cs. By error event of a.convolutional code, we mean
a sequence diverging from the zero state at time zero and remerging into the zero state at some discrete
time j > 0. For constituent block codes, an error event is simply a code word.

The coefficients AS wh of the equivalent block code can be obtained from (7), once the quantities 4
and AUl of the CCs are known. To evaluate them, consider a rate R = p/n convolutional code C wnh
memory® v and its equivalent (N/R, N — pv) block code whose code words are all sequences of length
N/R bits of the convolutional code starting from and ending at the zero state. By definition, the code

3In the following, a subscript “m” will denote “minimum”, and a subscript “M" will denote “maximum”.
4Since the input sequences of the inner code are not unconstrained iid binary sequences. but, instead, code words of the

outer code, hy, can be greater than the inner code free distance d' .

5By memory, we mean the maximum length of the shift rcgistcrs contained in the encoder.
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words of the equivalent block code are concatenations of error events of the convolutional codes. Let

A(LH ) =) A H (14)
h

be the weight enumerating function of sequences of the convolutional code that concatenate j error events
with total input information weight [. The coeflicient A; 5 ; represents the number of sequences of weight A,
input weight I, and number of concatenated error events j. Its meaning is pictorially clarified in Figure 7,
where it can be noticed that, by “concatenated”, we mean actually that the j error events are adjacent,
in the sense that each one starts immediately where the previous ends, without any gap in between.

For N much larger than the memory of the convolutional code, the coefficient Afh of the CWEF of the

equivalent block code can be upper bounded by®
na N
Al < Z ( ]/p) Aln; (15)
i=1

where nyr, the largest number of error events concatenated in a code word of weight h and generated by

a weight I information sequence, is a function of h and [ that depends on the encoder, as we will see later.

1 2 3

thZ , v

' J J
Information weight Z l _:l Z h = h

Codeword weight i=] i=1]

Fig. 7. The meaning of the coeflicients 4; 5, ;

Let us return now to the block code equivalent to the SCCC. Using previous result (15} with j = n°
and j = n' for the outer and inner code, respectively”, we can write

o

B
ASy < S (V) Az e

and
nhy N/
AF' S ( ‘P) A;,h,n'

6The upper bound is obtained neglecting the length of error events compared to N, and assuming that the number of ways

j input sequences producing j error events can be arranged in a register of length N is (NJ/p) . The ratio N/p derives from

the fact that the code has rate p/n, and thus N bits correspond to N/p input words or, equivalently, trellis steps.
"In the following, superscripts “0” and “i” will refer to quantities pertaining to outer and inner code, respectively.
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Substituting them into (7), we obtain an upper bound to the value of the coeflicients AS:“,, of the serially

concatenated block code equivalent to the SCCC in the form

N/pY (N/p
—(—Z—Ng—"l IR (16)

i M;'

£33

b 'n
L&Mz

{

where d} is the free distance of the outer code. By free distance dy, we mean the minimum Hamming
weight of error events for convolutional CCs, and the minimum Hamming weight of code words for block
CCs.

To proceed further, we need to replace the three binomial coeflicients in (16). In order to obtain an

upper bound to the right-hand side of (16), we will replace the two binomials in the numerator using the

() <%

and the binomial in the denominator using the lower bound®

upper bound

(N -1+41)
(1) >==—> 1111
Notice that the bounds are tight for large N and for n,l << N, which will be seen to always happen in
our case.
Substitution of these bounds in (16) yields
nM ﬂM . III'
- n°+n'— : o i
w,h ™ Z Z E N n°+n"no!ni!AW.f,n"Al.h.n' : (17)

= d°n° In'=1

Finally, substituting (17) intoc (13), gives the bit error probability bound in the form

N/R! NR? nay _ I’I' w
~hR.Ey[No n°4nt-i-1 : w i
Pe)S 3 eI 3 zd 5  DE AL L B YT
hm w=ws, I=dd ne=1nt=1

Using expression (18) as the starting point, we will obtain some important design considerations. The
bound (18) to the bit error probability is obtained by adding terms of the first summation with respect
to the SCCC weights h. The coeflicients of the exponentials in A depend, among other parameter, on N.
For large N, and for a given h, the dominant coefficient of the exponentials in h is the one for which the

exponent of N is maximum. Define this maximum exponent as
alh) = max{n +nt-1-1}. (19)

Evaluating a(h) in general is not possible without specifying the CCs. Thus, we will consider two impor-
tant cases, for which general expressions can be found.
8 Actually, since in all cases of interest, the summation index | is always less than N/2, we could also use the tighter bound

(’}') > (NYy/(12h).
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A. The exponent of N for the mintmum weight

For large values of £} /No, the performance of the SCC is dominated by the first terin of the summation
with respect to h, corresponding to the minimum value A = h,,. Remembering that, by definition, "jw
and nj, are the maximum number of concatenated error events in code words of the inner and outer code

of weights h,, and [, respectively, the following inequalities hold true:

4 h
ny < | = | 20
el .
nﬁus[—';,- , (21)
7]

and

Al hw] |1 ]| | i)
wzonl 5]+ 5] 3]+ [442) s

where (k) is the minimum weight ! of code words of the outer code yielding a code word of weight h,,
of the inner code, and [2] means “integer part of z”.
In most cases®, I, (hm) < 2d§, and hm < 2d}, so that n, = n$, = 1, and (22) becomes

a(hm) = 1= lm(hm) < 1—d5 . (23)

The result (23) shows that the exponent of N corresponding to the minimum weight of SCCC code
words is always negative for d7 > 2, thus yielding an interleaver gain at high E},/Np. Substitution of
the exponent a(h,,) into (18) truncated to the first term of the summation with respect to h yields the
following result, asymptotic with respect to Ey/Np :

Py(e) < B N1~ exp(—hm ReEs/No) (24)

where the constant By, is’

B, =

A oyt [l (R )Ml )
( )» 'k Z U)Aw,lm(hm),l N
p weEW,

and W,, is the set of input weights w that generate code words of the outer code with weight I, (hm ).
Expression (24) suggests the following conclusions:
o For the values of Ey/Ny and N where the SCCC performance is dominated by its free distance
dfs = h,,, increasing the interleaver length yields a gain in performance.
o To increase the interleaver gain, one should choose an outer code with large d}.
« To improve the performance with Ejy/No, one should choose an inner and outer code combination

such that h,, is large.
These conclusions do not depend on the structure of the CCs, and thus they yield for both recursive and

nonrecursive encoder.
The curves of Figure 4 showing the performance of the various SCBCs of Example 1 with increasing

interleaver length, however, also show a different phenomenon: for a given Ej/Ny, there is a value of N

9This will be seen in the examples that follow. and corresponds to the most favorable situation.
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above which the bound diverges. In other words, there seem to be coefficients of the exponents in ki, for
h > h,,, that increase with N.

To investigate this phenomenon, we will evaluate the largest exponent of N, defined as
A .
ap = m:tx{a(h)} = m?.;l({n" 4+nt—1-1}. (25)
w.d,
This exponent will permit to find the dominant contribution to the bit error probability for N — oc.

B. The mazimum ezxponenl of N

We need to treat the cases of nonrecursive and recursive inner encoders separately. As we will see,

nonrecursive encoders and block encoders show the same behavior.

B.1 Block and nonrecursive convolutional inner encoders

Consider the inner encoder and its impact on the exponent of N in (25). For a nonrecursive inner
encoder, we have nl, = I. In fact, every input sequence with weight one generates a finite-weight error
event, so that an input sequence with weight [ will generate, at most, { error events corresponding to the
concatenation of [ error events of input weight one. Since the uniform interleaver generates all possible
permutations of its input sequences, this event will certainly occur.

Thus, from (25) we have

amy =ny—~120,

and interleaving gain is not allowed. This conclusion holds true for both SCCCs employing nonrecursive
inner encoders and for all SCBCs, since block codes have code words corresponding to input words with
weight equal to one.

For those SCCs we always have, for some h, coefficients of the exponential in h of (18) that increase with
N, and this explains the divergence of the bound arising, for each Ey/Np, when the coeflicients increasing

with N become dominant.

B.2 Recursive inner encoders

For recursive convolutional encoders, the minimum weight of input sequences generating error events is
2 (see [16], [13]). As a consequence, an input sequence of weight [ can generate at most [%j error events.

Assuming that the inner encoder of the SCCC is recursive, the maximum exponent of N in (25) becomes

aM:ma.x{n}’w+ [ij -—I—-l}:max{nﬁ,— [Li—lj ——1} . (26)
w,l 2 w,l 2

The maximization involves | and w, since n$, depends on both quantities. In fact, remembering its
definition as the maximum number of concatenated error events of code words of the outer code with

weight { generated by input words of weight w, it is straightforward to obtain

o _ w l l
Ny = mm{l—l;':j , [-‘E‘\} < ‘:{gJ . (27)

Substituting now the last inequality (27) into (26) yields

ap < m[a.x{[zl%J -~ ’\!-%l—j - l} . (28)
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To perform the maximization of the RHS of (28), consider first the case

I=gqdy, gq integer,

ds + 1
aMSnI;Lx{q—[ql+ J—l}. (29)

so that

2
The RHS of (29) is maximized, for d} > 2, by choosing ¢ = 1. On the other hand, for

adj <1< (g+1)d5

the most favorable case is I = ¢d§, which leads us again to the previously discussed situation. Thus, the
maximization requires ! = d$. For this value, on the other hand, we have from (27) nj; < 1, and the
inequality becomes an equality if w € W;, where W; is the set of input weights w that generate code

words of the outer code with weight [ =dj. In conclusion, the largest exponent of N is given by

(30)

d; +1
2 .

= |

The value (30) of aps shows that the exponents of N in (18) are always negative integers. Thus, for all
h, the coeflicients of the exponents in h decrease with N, and we always have an interleaver gain.

Denoting by di_, as in {8)], the minimum weight of code words of the inner code generated by weight-2

input sequences, we obtain a different weight h(aar) for even and odd values of dj.
(]
d! even

For d} even, the weight h(ays) associated to the highest exponent of N, is given by

d i

h — {,eff ,

(o) 3

since it is the weight of an inner code word that concatenates d§/2 error events with weight di ..
Substituting the exponent ajs into (18), approximated only by the term of the summation with respect

to h corresponding to h = h(ays), yields the following result, asymptotic with respect to Ejy/Np :

=~ i.oL d‘j)d:-en
Pb(e) < Beyen N7 75 exp “—TRch/NO ) (31)
where & g
d$)%r dg! (d$)%r dg!
Buuen = b 37 A gy S g N i (32)
kp®s (dj/2)- wEW, kp®s (d!/2).

In (32), was,y is the maximum input weight yielding outer code words with weight equal to d}, and N¢
is the number of such code words.
dj odd

For dj odd, the value of h(ays) is given by

de — di
h(aM) - £ J 3) f.ef( +h(3)

33
2 m ( )
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(3) . - . . . .
where A5 is the minimum weight of sequences of the inner code generated by a weight 3 input sequence.

In this case, in fact, we have

d“;-—l
2

concatenated error events, of which n, — 1 generated by weight-2 input sequences and one gencrated by

Ny =

a weight-3 input sequence.
Thus, substituting the exponent aar into (18) approximated by keeping only the term of the summation

with respect to h corresponding to h = h(ar) yields the following result, asymptotic with respect to Ey /Ny

~ 4541 de — 3)d
Py(e) < BogaN~ 7 exp {_ [(—f—i)—‘—— + A Rch/No} , (34)
where e e
(d)% ds! (d%)% ds! ‘
Boga = Py / / onw,d;,l < wM,JNjo 351 ! ! . (35)

kp~a((d — 3)/2)t wew, kp~a—[(d5 ~ 3)/2)!

In both cases of d} even and odd, we can draw from (31) and (34) a few important design considerations:

o in contrast with the case of block codes and nonrecursive convolutional inner encoders,ithe use of a

recursive convolutional inner encoder always yields an interleaver gain. As a consequence, the first
design rule states that the inner encoder must be a convolutional recursive encoder.

o The coeflicient h(aps), which multiplies the signal-to-noise ratio Ej /No in (18), increases for increasing

values of d¢ . Thus, we deduce that the effective free distance of the inner encoder must
be maximized. Both this and the previous design rule had been stated also for PCCCs!® [13]. As
a consequence, the recursive convolutional encoders optimized for use in PCCCs (see Tables in [13],
[17]) can be employed altogether as inner CC in SCCCs.
From (33), however, we can infer that also the parameter h, namely the minimum weight of inner
code sequences generated by weight 3 input sequences, is important for odd values of d;. This may
lead to a choice for the inner code that is in partial disagreement with the design rules obtained for
PCCCs in [13]. Those design rules stated that optimum constituent encoders for PCCCs should have
a feedback connection made according to a primitive polynomial. For SCCCs with odd d}, it is often
convenient to choose an inner encoder whose feedback polynomial contains (1 + D) as a factor; this
choice, in fact, eliminates all error events of the inner code originated by odd-weight input sequences,
thus yieldiﬁg Y = 0. As a consequence, the parameter h(aps) would not be obtained from (33)
anymore, but, instead, from an input sequence to the inner code with weight larger than d}, yielding
a greater value for h(aps). In Section VI, we will see an example of code designed according to that
procedure. o o

o The interleaver gain is equal to N~ + for even values of dg and to N--5— for odd values of dj. As a
consequence, we should choose, compatibly with the desired rate R, of the SCCC, an outer code
with a large and, possibly, odd value of the free distance.

¢ As to other outer code parameters, N]" and ways,y should be minimized. In other words, we should

have the minimum number of input sequences generating frec distance error events of the outer code,

10For PCCCs, however, both CCs had to comply with those design rules.
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Code Outer code Inner code SCBC
Code type wy, | dg Code type why | dy [ di |l A | a(hm)

SCBC1 || Parity check {(4,3) 1 2 || Hamming (7,4) 1 3 3 3 -1

SCBC2 || Parity check (5,4) | 1 2 BCH (15,5) 1 7 7 7 -1

sSCBC3 Hamming (7,4) 1 3 BCH (15,7) 1 5 5 5 -2

TABLE 1
DESIGN PARAMETERS OF CONSTITUENT CODES AND SERIALLY CONCATENATED BLOCK CODES FOR THREE SRERIALLY

CONCATENATED BLOCK CODES

and their input weights should be minimized. Since nonrecursive encoders have error events with
w = 1, and, in general, less input errors associated with error events at free distance (18], it can
be convenient to choose as outer code a nonrecursive encoder with minimum Nyf and wp ;.

Conventional nonrecursive convolutional codes found in books (see for example [7]) are appropriate.

C. Ezamples confirming the design rules

To confirm the design rules obtained asymptotically, i.e. for large signal-to-noise ratio and large in-
terleaver lengths N, we evaluate the upper bound (3) to the bit error probability for several block and
convolutional SCCs, with different interleaver lengths, and compare their performance with those pre-

dicted by the design guidelines.

C.1 Serially concatenated block codes

We consider three different SCBCs obtained as follows: the first is the (7,3, N = 4m) SCBC described
in Example 2, the second is a (15,4, N = 5m) SCBC using as outer code a (5,4) parily-check code and
as inner code a (15,5) BCH code, and the third is a (15,4, N = 7m) SCBC using as outer code a (7,4)
Hamming code and as inner code a (15,7) BCH code. Note that the second and third SCBCs have the
same rate, 4/15.

The outer, inner, and SCBC code parameters introduced in the design analysis of Section IV are listed
in Table 1.

In Figs. 4, 8, and 9, we plot the bit error probability bounds for the SCBCs 1,2 and 3 of Table L.

Code SCBC1 has d} = 2; thus, from (23), we expect an interleaver gain going as N~!. This is confirmed
by the curves of Figure 4, which, for a fixed and sufficiently large signal-to-noise ratio, show a decrease
in Py(e) of a factor 10, when N increases from 4 to 40, from 40 to 400 and from 400 to 4000. Moreover,
curves of Figure 4 show a divergence of the bound at higher E3/Ny for increasing N. This is due to
coefficients of terms with h > h,, in (18) that increase with N, whose influence become more important
for larger N.

Code SCBC2 has dj = 2; thus, from (23), we expect the same interleaver gain as for SCBCI, i.e.
N~1. This is confirmed by the curves of Figure 8, which also show the bound divergence predicted in the
analysis of Section IV.

Code SCBC3 has dj = 3; thus, from (23), we expect a larger interleaver gain than for SCBC1 and

SCBC2, i.e. N™2. This is confirmed by the curves of Figure 9, which, for a fixed and sufficiently large
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Code description G(D)
Rate 1/2 R [ 22 |

Rate 1/2 NR [ 1+ D+D% 14D ]

0, 151)’
Rate 2/3 R [ b s ]
0, 1, t38%p7
1+ D, D, 1

Rate 2/3 NR
1+D, 1, 14D

TABLE II

GENERATING MATRICES FOR THE CONSTITUENT CONVOLUTIONAL CODES

Code Outer code Inner code SCCC
Code wg, | dj Code wh, | dy | diy || hm | a(hm) | hlam) | oM
SCCC1 || Rate1/2R | 2 | 5 || Rate2/3R | 2 [ 3| 4 [ 5 | -4 7 -3
sccc2 || Rate1/2R | 2 | 5 | Rate2/3aNR| 1 | 3| 4 || 5 | -4
SCCC3 || Rate 1/2NR | 1 5 Rate 2/3 R 2 3 4 5 -4 7 -3
SCCC4 || Rate 2/3NR | 1 3 Rate 1/2 R 2 5 6 5 -2 7 -2
TABLE 111

DESIGN PARAMETERS OF CONSTITUENT CODES AND OF SERIALLY CONCATENATED CONVOLUTIONAL CODES FOR FOUR SERIALLY

CONCATENATED CONVOLUTIONAL CODES

signal-to-noise ratio, show a decrease in Py(e) of a factor 100, when N increases from 7 to 70, from 70 to
700 and from 700 to 7000. As to the bound divergence, we notice a slightly different behavior with respect
to previous cases. The curve with N = 7000, in fact, denotes a strong influence of coefficients increasing
with N for Ey/Ng lower than 7 dB.

C.2 Serially concatenated convolutional codes

We consider four different SCCCs obtained as follows: the first, SCCCI, is a (3,1,N) SCCC (the same
of Example 3), using as outer code a 4-state, (2,1) recursive, systematic convolutional encoder and as
inner code a 4-state, (3,2) recursive, systematic convolutional encoder. The second, SCCC2, is a (3,1,N)
SCCC, using as outer code the same 4-state, (2,1) recursive, systematic convolutional encoder of SCCC1,
and as inner code a 4-state, (3,2) nonrecursive convolutional encoder. The third, SCCC3, is a (3,1,N)
SCCC using as outer code a 4-state, (2,1) nonrecursive, convolutional encoder, and as inner code the
same 4-state, (3,2) recursive, systematic convolutional encoder of SCCC1. The fourth, SCCCA4, finally,
is a (6,2,N) SCCC, using as outer code a 4-state, (3,2) nonrecursive convolutional encoder, and as inner
code a 4-state, (6,3) recursive, systematic convolutional encoder, obtained by concatenating three equal
4-state (2,1) recursive, systematic convolutional encoders.

The outer, inner, and SCCC code parameters introduced in the design analysis in Section [V are listed

in Table HI. In this table, the CCs are identified through the description of Table II.
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Fig. 8. Analytical bounds for the serially concatenated block code SCBC2

In Figs. 6,10, 11 and 12, we plot the bit error probability bounds for the SCCCs 1,2,3 and 4 of Table 111, |
with interleaver lengths N = 200, 400, 600,800, 1000, 2000. In Fig. 12, which refers to the code SCCC4 of
Table I, the values of the interleaver length are different, i.e. N = 150, 300, 450, 600, 750, 1500. This is
due to the fact that the outer code for SCCC4 has a rate 2/3, instead of 1/2, and thus the interleaver
length must be changed in order to guarantee the same input delay for all SCCCs.

Consider first the SCCCs employing as inner CCs recursive, convolutional encoders as suggested in
Section IV. They are SCCC1, SCCC3, and SCCCA4.

Code SCCC1 has d§ = 5; thus, from (34), we expect an interleaver gain behaving as N ~3. This is fully
confirmed by the curves of Figure 6, which, for a fixed and sufficiently large signal-to-noise ratio, show
a decrease in Py(e) by a factor 1000, when N increases from 200 to 2000. For an even more accurate
confirmation, one can compare the interleaver gain for every pair of curves in the figure. The curves of
Figure 6 do not show a divergence of the bound at higher E,/Ny for increasing N. This is due to the
choice of a recursive encoder for the inner code, which guarantees that all coefficients a(h) decrease with

N.

Code SCCC3 differs from SCCCI1 only in the choice of a nonrecursive outer encoder, which is a 4-
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Fig. 9. Analytical bounds for the serially concatenated block code SCBC3

state encoder (see Table III) with the same d} as for SCCCI1, but with wf, = 1, instead of w}, = 2.
From the design conclusions, we expect a slightly better behavior of this SCCC. This is confirmed by the
performance curves of Figure 11, which present the same interleaver gain as those of SCCCI, but have a
slightly lower Py(e) (the curves for SCCC3 are translated versions of those of SCCC1 by 0.1 dB).

Code SCCC4 employs the same CCs as SCCC2, but reverses their order. It uses as outer code a rate
2/3 nonrecursive convolutional encoder, and as inner code a rate 1/2 recursive convolutional encoder. As
a consequence, it has a lower d} = 3 and a lower ap = 2. Thus, from (34), we expect a lower interleaver
gain than for SCCC1 and SCCC3, as N~2. This is confirmed by the curves of Figure 12, which, for a
fixed and sufliciently large signal-to-noise ratio, show a decrease in Py(e) of a factor 100, when N increases
from 150 to 1500. On the whole, SCCC4 looses more than 2 dB in coding gain with respect to SCCC3.
This result confirms the design rule suggesting the choice of an outer code with as large d} as possible.

Finally, let us consider code SCCC2, which differs from SCCC]1 in the choice of a nonrecursive inner

encoder, with the same parameters but with the crucial difference of wj},

= 1. Its bit error probability
curves are shown in Figure 10. They confirm the predictions of Section IV. We see, in fact, that for

low signal-to-noise ratios, say below 4 dB, almost no interleaver gain is obtained. This is because the
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Fig. 10. Analytical bounds for the serially concatenated convolutional code SCCC2

performance are dominated by the exponent h(aps), whose coeflicient increases with N. On the other
hand, for larger signal-to-noise ratios, where the dominant contribution to Py(e) is the exponent with the
lowest value h,,, the interleaver gain makes its appearance. From (24), we foresee a gain as N =%, meaning
4 orders of magnitude for N increasing from 200 to 2000. Curves in Figure 10 show a smaller gain (slightly
higher than 1/1000), which is on the other hand rapidly increasing with E3/No.

V. COMPARISON BETWEEN PARALLEL AND SERIALLY CONCATENATED CODES
In this section, we will use the bit error probability bounds previously derived to compare the perfor-
mance of parallel (“turbo codes”, [8]) and serially concatenated block and convolutional codes.
A. Serially and parallel concatenated block codes

To obtain a fair comparison, we have chosen the following PCBC and SCBC: the PCBC has parameters
(11,3, N = 3m) and employs two equal (7,3) systematic cyclic codes with generator g(D) = (1 + D)(1 +
D + D3); the SCBC, instead, is a (15m,4m, N = Tm) SCCC, obtained by the concatenation of the (7,4)
Hamming code with a (15,7) BCH code.

They have almost the same rate (RS = 0.266, RY = 0.273), and have been compared choosing the
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Fig. 11. Analytical bounds for the serially concatenated convolutional code SCCC3

interleaver length in such a way that the decoding delay due to the interleaver, measured in terms of
input information bits, is the same. Since the interleaver acts on information bits for the PCBC, its
length is equal to m times the length of the information word, i.e. N = 3m. For the SCBC, instead, the
interleaver acts on the code words of the outer code, and, as a consequence, to yield the same decoding
delay measured as number of information bits, its length must be that of the PCBC divided by R?. As
an example, to obtain a delay equal to 12 input bits, we must choose an interleaver length N = 3m = 12
for the PCBC, and N = 7m = 12/R2 = 21 for the SCBC.

The results are reported in Figure 13, where we plot the bit error probability bounds versus the signal-
to-noise ratio E;/Np for various input delays. The results show that, for low values of the input delay, the
performance is almost the same. On the other hand, increasing the delay (and thus the interleaver length
N) yields a significant interleaver gain for the SCBC, and almost no gain for the PCBC. The difference
in performance is 3 dB at Py(e) = 107¢ in favor of the SCBC.
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Fig. 12. Analytical bounds for the serially concatenated convolutional code SCCC4

B. Serially and parallel concatenated convolutional codes

To obtain a fair comparison, we have chosen the following PCCC and SCCC: the PCCC is a rate 1/3
code obtained concatenating two equal rate 1/2, 4-state systematic recursive convolutional encoders with
generator matrix as in Table II, first row. The SCCC is a rate 1/3 code using as outer code the same
rate 1/2, 4-state code as in the PCCC, and, as inner encoder, a rate 2/3, 4-state systematic recursive
convolutional encoder with generator matrix as in Table II, third row. Also in this case, the interleaver
lengths have been chosen so as to yield the same decoding delay, due to the interleaver, in terms of
input bits. The results are reported in Figure 14, where we plot the bit error probability versus the
signal-to-noise ratio Fy/Ny for various input delays.

The results show the great difference in the interleaver gain. In particular, the PCCC shows an inter-
leaver gain going as N ~!, whereas the interleaver gain of the SCCC, as from (34), goes as N~ R =N-3,
being the free distance of the outer code equal to 5. This means, for Py(e) = 107!, a gain of more than
2 dB in favour of the SCCC.

Previous comparisons have shown that serial concatenation is advantageous with respect to parallel

concatenation, in terms of ML performance. For medium-long interleaver lengths, this significant result
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Fig. 13. Comparison of serially concatenated block codes and parallel concatenated block codes with various interleaver
lengths, chosen so as to yield the same input decoding delay ’

remains a theoretical one, as ML decoding is an almost impossible achievement. For parallel concatenated
codes (“turbo codes”), iterative decoding algorithms have been proposed, which yield performance close
to optimum, with limited complexity. In the following section, we will present a new iterative decoding
scheme capable of decoding serially concatenated codes, and prove, with several examples of applications,

that the performance gain with respect to parallel concatenation is maintained.

V1. ITERATIVE DECODING OF SERIALLY CONCATENATED CODES

In this section, we present a new iterative algorithm for decoding serially concatenated codes, with
complexity not significantly higher than that needed to separately decode the two CCs. Because of the
importance in applications, all examples will refer to SCCCs, although the decoding algorithm can be
applied to SCBCs as well.

The core of the new decoding procedure consists of a block called SISO (Soft-Input Soft-Output). It is
a four-port device, which accepts as inputs the probability distributions (or the corresponding likelihood
ratios) of the information and code symbols labeling the edges of the code trellis, and forms as outputs

an update of these probability distributions based upon the code constraints. The block SISO is used
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Fig. 14. Comparison of serially concatenated convolutional codes and parallel concatenated convolutional codes with 4-state

convolutional codes

within the iterative decoding algorithm as shown in Figure 15, where we also show the block diagram of
the encoder to clarify the notations.

We will first explain in words how the algorithm works, according to the blocks of Figure 15. Succes-
sively, we will give the input-output relationships of the block SISO.

The symbols A(; I) and A(+; O) at the input and output ports of SISO refer to the logarithmic likelihood
ratios (LLRs)!!, unconstrained when the second argument is I, and modified according to the code
constraints when it is O. The first argument u refers to the information symbols of the encoder, whereas
¢ refers to code symbols. Finally, the superscript o refers to the outer encoder, and i to the inner encoder.
The LLRs are defined as

A P(z;-) ]
Mz ) =log | — 36
(21 2 log | s (36)
When z is a binary symbol, “0” or “1”, z.r is generally assumed to be the “1”. When z belongs

1 When the symbols are binary, only one LLR is needed; when the symbols belong to an L-ary alphabet, L — 1 LLRs are

required.
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Fig. 15. Block diagrams of the encoder and iterative decoder for serially concatenated convolutional codes

to an L-ary alphabet, we can choose as z.er each one of the L symbols; a common choice for hardware
implementation is the symbol with the highest probability, so that one LLR will be equal to zero and all
others negative numbers.

Differently from the iterative decoding algorithm employed for turbo decoding, in which only the LLRs
of information symbols are updated, we must update here the LLRs of both information and code symbols
based on the code constraints.

During the first iteration of the SCCC algorithm!?, the block “SISO Inner” is fed with the demodulator
soft outputs, consisting of the LLRs of symbols received from the channels, i.e. of the code symbols of the
inner encoder. The second input A(u'; I) of the SISO Inner is set to zero during the first iteration, since
no a-priori information is available on the input symbols u* of the inner encoder.

The LLRs A(c'; I) are processed by the SISO algorithm, which computes the eztrinsic LLRs of the
information syrﬁbols of the inner encoder A(u'; O) conditioned on the inner code constraints. The extrinsic
LLRs are passed through the inverse interleaver (block labeled “x~!”), whose outputs correspond to the

LLRs of the code symbols of the outer code, i.e.
7r‘1[/\(14‘; 0)] = A% 1)

These LLRs are then sent to the block “SISO Outer” in its upper entry, which corresponds to code
symbols. The SISO Outer, in turn, processes the LLRs A(c°; I) of its unconstrained code symbols, and

computes the LLRs of both code and information symbols based on the code constraints. The input

1276 simplify the description, we assume for now that the interleaver acts on symbols instead of bits. In the actual decoder,
we deal with bit LI,Rs and bit interleaver, as it will be seen later.
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A(u?; [} of the SISO Outer is always set to zero, which implies assuming equally likely transmitted source
information symbols. The output LLRs of information symbols (which yield the a-posteriori LLIRs of the
SCCC information symbols) will be used in the final iteration to recover the information bits. On the other
hand, the LLRs of outer code symbols, after interleaving are fed back to the lower entry (corresponding
to information symbols of the inner code) of the block SISO Inner to start the sccond iteration. In fact

we have

7[A(c%; 0)]) = A(u*; 1)
A. The input-output relationships for the block SISO

The block SISO has been described in [19]. It represents a slight generalization of the BCJR algorithm
(see [20], [21], [24]). Here, we will only recall for completeness its input-output relationships. They will
refer, for notations, to the trellis section of the trellis encoder, assumed to be time invariant as we deal
with convolutional codes, shown in Figure 16, where the symbol e denotes the trellis edges, and where we
have identified the information and code symbols associated to the edge e as u(e), ¢(e), and the starting
and ending states of the edge e as s%(e), s (e), respectively.

The block SISO works at symbol level, i.e., for an (n, p) convolutional code, it operates on information
symbols u belonging to an alphabet with size 27 and on code symbols belonging to an alphabet with size
2", We will give the general input-output relationships, valid for both outer and inner SISOs, assuming

that the information and code symbols are defined over a finite time index set [1,..., K].

At timek, k=1,..., K, the output extrinsic LLRs are computed as
M(€i0) = max *{anoafs®(€)] + Mlu(e)i ]+ Als"(eN) + he (37)
A(;0) = e,y(lgfu‘{ak-x[ss(e)] + Aele(e); 1] + Be[s®(e)])} + hu (38)

The name extrinsic given to the LLRs computed according to (37) and (38) derives from the fact that the
evaluation of A;(c; O) (and of Ag(u; O)) does not depend on the corresponding simultaneous input Ax(c; I)
(and A (u; 1)), so that it can be considered as an update of the input LLR based on informations coming
from all homologous symbols in the sequence, except the one corresponding to the same symbol interval.

The quantities a,(-) and Bx(-) in (37) and (38) are obtained through the forward and backward recur-

sions, respectively, as

ar(s) = czsg](z:))(z"{ak_l[ss(e)] + Ae[u(e); I+ Ae[e(e); N} k=1,..., K -1 (39)
() = max {Brnls"(@l+ Mnlu ]+ denalee)i N} k=K —1,....1,  (40)

with initial values:

0 § = So
ao(s) = .
—o0o otherwise
0 s=3S
Ar(S) = { X
i —oo otherwise .

The quantities h., hy in (37) and (38) are normalization constants.

The operator max® performs the following operation
p P
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Fig. 16. Trellis section defining the notations used for the description of the SISO algorithm

J
A .
max*(a;) = lo E e 41
i (a5) g . (41)
j=1
This operation, a crucial one in affecting the computational complexity of the SISO algorithm, can be

performed in practice (see [22], [23]) as

max*(a;) = max(a;) + (a1, az2,...,ay) (42)
j j

where 6(ay, as, . .., ay) is a correction term that can be computed recursively using a single-entry look-up
table [22], [23)].

The previous description of the iterative decoder assumed that all operations were performed at symbol
level. Quite often, however, the interleaver operates at bit level to be more effective. This is the case, for

example, of all results presented in Sections 1,1V, and V.
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Thus, to performs bit interleaving, we need to transform the symbol extrinsic L1LRs obtained at the
output of the first SISO into extrinsic bit LLRs, before they enter the deinterleaver. After deinterleaving,
the bit LLRs need to be compacted into symbol LL.Rs before entering the second SISO block, and so on.
These operations are performed under the assumption that the bits forming a symbol are independent.

Assuming an (n,p) code, and denoting with u = [uy,...,up] the information symbol formed by p

information bits, the the extrinsic LLR A; of the i-th bit u; within the symbol u is obtained as

Ai(u;0) = u{lt}a;(u‘ [Ae(u;0) + A(u; 1)) — ur:ﬂa;(; (A(u;0) + A (u; 1)) = Xi(u; ) (43)

Conversely, the extrinsic LLR of the symbol u is obtained from the extrinsic LLRs of its component

bits u; as

P
Aw) =Y Ni(u) (44)
1=1

As previous description should have made clear, the SISO algorithm requires that the whole sequence
had been received before starting. The reason is due to the backward recursion that starts from the
(supposed known) final trellis state. As a consequence, its practical application is limited to the case
where the duration of the transmission is short (K small), or, for A" long, when the received sequence can
be segmented into independent consecutive blocks, like for block codes or convolutional codes with trellis
termination {14). It cannot be used for continuous decoding. This constraint leads to a frame rigidity
imposed to the system, and also reduces the overall code rate, because of trellis termination.

A more flexible decoding strategy is offered by modifying the algorithm in such a way that the SISO
module operates on a fixed memory span, and outputs the smoothed probability distributions after a
given delay D. This algorithm, which we have called the sliding window soft-input soft-output (SW-SISO)
algorithm, is fully described in [23]. In the following simulation results, the SW-SISO algorithm has been
applied.

B. Applications of the decoding algorithm

We will now use the decoding algorithm to confirm the design rules presented before, and to show
the behavior of SCCC in the region of low signal-to-noise ratios (below cutoff rate). Since in this region

analytical bounds fail to give significant results, no meaningful quantitative com arisons can be performed
s~
€

between simulated and analytical performance. However, we will show that t)fe huw‘f the simulation
results agrees with the design considerations that had been based on the analysis:

The following aspects will be considered:

o the behavior of the decoding algorithm versus the number of decoding iterations,

+ the behavior of the decoding algorithm versus the interleaver length,

o the effect of choosing a nonrecursive inner code,

¢+ the SCCC behavior for very low signal-to-noise ratios, to see how close serial concatenation can get

to theoretical Shannon bound,
+ the comparison between SCCCs and PCCCs (turbo codes) for the same value of the decoding delay

imposed by the two schemes on the input bits.

For all simulated SCCCs, we have used purely random interleavers.
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B.1 Simulated coding gain versus number of iterations

Consider the rate 1/3 SCCC1 of Table 111. It employs two 4-state recursive convolutional encoders,
the first (outer code) with rate 1/2 and the second (inner code) with rate 2/3, joined by an interleaver
of length N = 2048. Since the interleaver operates on coded sequences produced by the outer rate 1/2
encoder, its length of 2048 bits corresponds to a delay of 1024 information bits. The simulation results are
shown in Figure 17 in terms of bit error probability versus E3/No for a number of iterations N; ranging

from 1 to 7. The nice convergence of the decoding algorithm is manifest.

107!

1072

107

Pb(e)

10

107

10

1

1.2 1.4 1.6

fl 1 1 i

04 0.6 0.8

1
Ey/N, [dB]

Fig. 17. Simulated bit error probability versus the number of iterations for a rate 1/3 serially concatenated convolutional
code obtained concatenating a 4-state rate 1/2 recursive convolutional code and a 4-state rate 2/3 recursive convolutional
code. The concatenated code is the code SCCC1 of Table III. The decoding delay in terms of input bits due to the

interleaver is 1024

B.2 The effect of a nonrecursive inner encoder

The analysis of Section IV came to the conclusion that a non recursive inner encoder should yield
little interleaver gains.: To confirm this theoretical prediction by simulation results, we plot in Figure 18
the bit error probability versus the input decoding delay obtained by simulating the concatenated code

SCCC2 of Table II1. This code uses as inner encoder a 4-state nonrecursive encoder. The curves refer
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to a signal-to-noise ratio Fy/No = 1.5 dB, and to a number of iterations N; ranging from 1 to 10. It is
evident that the bit error probability reaches the floor of 10~5 for a decoding delay greater than or equal
to 1024, so that no interleaver gain takes place beyond this point. For comparison, we report in Figure 19
the results obtained for the code SCCC3 of Table 3. The curves refer to a signal-to-noise ratio of 0.75 dB,

and show the interleaver gain predicted by the analysis.

ol e 5 | : ]
102 b .
@ 10'3 L O ST OTIOSOE e , D NS NURUUIR, YOS NRUUROIR . WOOURPRRURURIUOPURORD) ROt STP OO OR P
vt : '
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Input delay

Fig. 18. Simulated performance of concatenated code SCCC2 of Table III. The bit error probability is plotted versus input
decoding delay for different number of iterations. The signal-to-noise ratio is 1.5 dB

B.3 Approaching the theoretical Shannon limit

We show here the capabilities of SCCCs of yielding results close to the Shannon capacity limit. To this
purpose, we have chosen a rate 1/4 concatenated scheme with very long interleaver, corresponding to an
input decoding delay of 16,384. The constituent codes are 8-state codes: the outer encoder is nonrecursive,

and the inner encoder is a recursive encoder. Their generating matrices are

Go(D) = [14D,14D+ D
1+ D+ D3

Gi(D) ( ‘—1’1—1—)—] .

i
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Fig. 19. Simulated performance of concatenated code SCCC3 of Table III. The bit error probability is plotted versus input

decoding delay for different number of iterations. The signal-to-noise ratio is 0.75 dB

respectively. Note the feedback polynomial (1 + D) in the generator matrix of the inner encoder, which
eliminates error events with odd input weights. The results in terms of bit error probability versus signal-
to-noise ratio for different number of iterations are presented in Fig, 20. They show that the decoding
algorithm works at £y/Ng = ~0.05 dB, at 0.76 dB from the Shannon capacity limit (which is in this case
equal to -0.817 dB), with very limited complexity (remember that we are using two rate 1/2 codes with
8 states).

B.4 Comparison between serially and parallel concatenated codes

Previous analytical results showed that serial concatenation can yield significantly higher interleaver
gains and steeper asymptotic slope of the error probability curves. To check if these advantages are
retained when the codes are iteratively decoded at very low signal-to-noise ratios, we have simulated the
behavior of SCCCs and PCCCs in equal system conditions: the concatenated code rate is 1/3, the CCs
are 4-state recursive encoders (rates 1/2 4+ 1/2 for PCCCs, and rates 1/2 + 2/3 for the SCCCs), and
the decoding delays in terms of input bits are 256, 1024 and 16,384 respectively. In Figure 21 we report
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Fig. 20. Simulated performance of a rate 1/4 serially concatenated code obtained with two eight-state constituent codes

and an interleaver yielding an input decoding delay equal to 16384

the results, in terms of bit error probability versus signal-to-noise ratio, for the case of a decoding delay
equal to 256, after three and nine decoding iterations. As it can be seen from the curves, the PCCC
outperforms the SCCC for high values of the bit error probabilities. Below 103 (for nine iterations),
the SCCC behaves significantly better, and do not present the floor'3. The improvement of SCCC with
respect to PCCC becomes more visible in Figure 22, which refers to a delay of 1024 and to three and seven
iterations of the decoding algorithm. For bit error probabilities lower than 102, the SCCC outperforms
PCCC. In particular, the absence of error floor is here patent. At 104, SCCC has an advantage of 0.7 dB
with seven iterations. Finally, in Figure 23, we report the results for an input decoding delay of 16,384 and
six and nine decoding iterations. In this case, the crossover between PCCC and SCCC happens around
10-5. The advantage of SCCC at 107¢ is 0.5 dB with ninc iterations.

As a conclusion, we can say that the advantages obtained for signal-to-noise ratios above the cutoff rate,

where the union bounds can be safely applied, are retained also in the region between channel capacity and

131t is customary in the turbo codes literature to call “error floor” what is actually a sensible change of slope of the

performance curve.
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cutoff rate. Oniy when the system interest focuses on high values of bit error probability (the threshold
depending on the interleaver size) the PCCC are to be preferred. PCCCs, however, present a floor to the
bit error probability, which, in the most favourable case seen above, lies around 1078, This floor is absent,

or, at least, much lower, in the case of SCCC.

Finally, it must be recognized that the constituent codes design rules presented in Section IV are
based on union bound considerations, and thus yield optimum SCCCs above the cutoff rate. For system
applications aiming at very low signal-to-noise ratios, close to the channel capacity (as, for example, in
deep-space communications), a general statement is that complex CCs should be avoided, and CCs with
low number of states (4-16) should be used. So far, finding the best codes to operate in the region of very

low signal-to-noise ratios, has been a matter of feeling dictated by experience and, literally, case by case

“crafting”.
1
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Fig. 21. Comparison of two rate 1/3 parallel concatenated convolutional code and serially concatenated convolutional code.
The parallel concatenated convolutional code is obtained concatenating two equal rate 1/2 4-state codes (first code in
‘able 11); the serially concatenated convolutional code is the code SCCC1 of Table 1II. The curves refer to three and

nine iterations of the decoding algorithm and to an equal input decoding delay of 256
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Fig. 22. Comparison of two rate 1/3 parallel concatenated convolutional code and serially concatenated convolutional code.
The parallel concatenated convolutional code is obtained concatenating two equal rate 1/2 4 states codes (first code in
Table 1I); the serially concatenated convolutional code is the code SCCC1 of Table III. The curves refer to three and
seven iterations of the decoding algorithm and to an equal input decoding delay of 1024

VII. CoNncLUsIONS

Serially concatenated codes with interleaver, a concept building on classical concatenated codes and
parallel concatenated codes known as “turbo codes”, have been studied. They consisty 8t the cascade of
an outer encoder, an interleaver permuting the outer code words bits, and an inner encoder whose input
words are the permuted outer code words. Upper bounds to the average maximum-likelihood bit error
probability of serially concatenated block and convolutional coding schemes have been derived. Based on
those bounds, we have derived design guidelines for the outer and inner codes that maximize the inferleaver
gain and the asymptotic slope of the error probability curves. It has been shown that the interleaver gain,
defined as the factor that decreases the bit error probability as a function of the interleaver size, can be
made significantly higher than for turbo codes. Finally, a new, low-complexity iterative decoding algorithm
that yields performance close to the Shannon limit has been illustrated. Extensive examples have been

presented, and comparisons with parallel concatenated convolutional codes have been performed. The
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Fig. 23. Comparison of two rate 1/3 parallel concatenated convolutional code and serially concatenated convolutional code.
The parallel concatenated convolutional code is obtained concatenating two equal rate 1/2 4 states codes (first code in
Table II); the serially concatenated convolutional code is the code SCCC1 of Table IIl. The curves refer to six and nine
iterations of the decoding algorithm and to an equal input decoding delay of 16384

simulation results show that, in general, SCCCs have significantly lower changes of slope in the bit error
probability curves than PCCCs. On the other hand, if the bit error probabilities achievable by PCCCs
above the change of slope are sufficiently low, they can be reached by PCCCs at slightly lower signal-to-
noise ratios than by SCCCs. As a conclusion, PCCCs seem thus better suited to approaching capacity
limits for bit error probabilities above the error floor (10-% - 10~7), whereas SCCCs are better suited to

provide near error free performance.
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